CHROMIUM PLATING AND POLISH (DAR SITE ID #108)

Address:	373 Wythe Avenue, Brooklyn, New York
Tax Lot Parcel(s):	Brooklyn Block 2442, Lot 1
Latitude:	40.712187
Longitude:	-73.965619
Regulatory Programs/	
Numbers/Codes:	NYSDEC Spill No. 8801453, 35 separate NYSDEP NOV, USEPA
	ID No. NYD041975715, PBS No. 2-095214
Analytical Data Status:	🗌 Electronic Data Available 🛛 Hardcopies only
	No Data Available

1 SUMMARY OF CONSTITUENTS OF POTENTIAL CONCERN (COPCs) TRANSPORT PATHWAYS TO THE CREEK

The current understanding of the transport mechanisms of COPCs from the upland portions of the Chromium Plating and Polish site (site) to Newtown Creek is summarized in this section and Table 1 and supported in the following sections.

Overland Transport

This site is located 1.5 miles from Newtown Creek and associated waterways. This is not a complete current or historical pathway.

Bank Erosion

This site is not adjacent to Newtown Creek and associated waterways. This is not a complete current or historical pathway.

Groundwater

The site is located approximately 1.5 miles from Newtown Creek and associated waterways and 0.2 mile from the East River. Information regarding on-site groundwater investigations was not identified in documents available for review. Regional studies indicate that groundwater from this site discharges to the East River (Misut and Monti 1999). This is not a complete current or historical pathway.

Overwater Activities

The site is not adjacent to Newtown Creek and associated waterways. Information regarding overwater activities was not identified in documents available for review. This is not a complete current or historical pathway.

Stormwater/Wastewater Systems

Information available for review did not discuss stormwater or wastewater management practices prior to 1985. An industrial wastewater discharge (IWD) permit was issued for the site (NYCDEP 2003); however, this permit has expired. This site is within the Newtown Creek Water Pollution Control Plant (WPCP) sewershed (NYCDEP 2007). Wastewater and stormwater from the site flow to the sewer system and discharge to the East River via combined sewer overflow (CSO) Outfall NC-012. Sewer/CSO discharge and direct discharge of stormwater and wastewater are not a complete current or historical pathways.

Air Releases

Information related to air discharges at this site is limited to one air pollution complaint from 1988 (NYCDEP 1988). Further information regarding air emissions from the site was not identified in documents available for review. There is insufficient evidence to make a current or historical pathway determination.

2 PROJECT STATUS

Information regarding on-site environmental investigations was not identified in documents available for review. A New York State Department of Environmental Conservation (NYSDEC) Site Code was not found for this site.

3 SITE OWNERSHIP HISTORY

Respondent Member:

Chromium Plating and Polish

Owner	Years	Occupant	Types of Operations				
Jeanette Sherkin & Blanche Goldberg	Unknown – 1967	Unknown	circa 1950 lacquer spraying (on part of site)				
MRM Properties Corporation.	1967 — 1969						
Mario Fichera, Jr.	1969	Characteris Disting and	Nickel and chromium plating,				
Chromium Plating and Polish	1969 – 1985	Polish (company dissolves	polishing, coating electro cleaning and acid/alkaline cleaning				
Robert Fichera and Mario Fichera, Jr.	1985 – 1986	2005)					
Mario Fichera	1986						
373 Wythe Realty, Inc.	1986 – 2009	Visual Display, Inc. (2004 – 2005)	Plating				
Wythe Properties, LLC	2009 – present	Empty lot					

4 PROPERTY DESCRIPTION

The property occupies approximately 1.1 acres. It is approximately 1.5 miles from Newtown Creek and associated waterways and 0.2 mile east of the East River. The site slopes down from approximately 41 feet above mean sea level on the eastern boundary to approximately 37 feet above mean sea level on the western boundary, and the slope continues down toward the East River (see Figure 1). Based on the aerial photograph in Figure 1, the site has been razed and no new buildings have been erected.

There are multi-story buildings adjacent on the north and east sides, and city streets border the property to the south and west. The area is zoned manufacturing and the surrounding area is a mix of residential, commercial, and park areas (NYCDCP 2011).

5 CURRENT SITE USE

The site is currently unoccupied.

6 SITE USE HISTORY

A 1950 Sanborn map showed sheds at the corner of Wythe Avenue and South 5th Street at 373 Wythe Avenue and indicated a lacquer spraying facility existed at 367 Wythe Avenue (Sanborn, 1950).

Chromium Plating and Polish began operations at 373 Wythe Avenue sometime after 1967 (Sherkin 1967). It performed nickel and chromium plating, polishing, and coating (NYCDEP 1988).

Chromium Plating and Polish ceased operations on December 15, 2004. Visual Display, Inc. continued operations in a limited capacity and ceased plating in June 2005 (Visual Display, Inc. 2005). The site had contained a one-story commercial building. In 2008, a developer planned a high-rise residential building, but currently the lot is empty and for sale (Brownstoner.com 2008; Google Maps 2011).

7 CURRENT AND HISTORICAL AREAS OF CONCERN AND COPCS

The current understanding of the historical and current potential upland and overwater areas of concern at the site is summarized in Table 1. The following sections provide a brief discussion of the potential sources and COPCs at the site requiring additional discussion.

Potential areas of concern at the site include areas in which plating and polishing occurred, as well as the former tanks and processing equipment for the plating operations, on-site fuel tanks, and generated wastewaters that were discharged to the sewer system. COPCs associated with these areas of concern include total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), including polycyclic aromatic hydrocarbons (PAHs) and metals.

7.1 Uplands

There was no documentation available in the material reviewed while preparing this summary regarding the lacquer spraying facility that occupied the site prior to 1967. From 1980 to 2006, the site was classified by U.S. Environmental Protection Agency (USEPA) as a Resource Conservation and Recovery Act (RCRA) Large Quantity Generator (USEPA ID No. NYD041975715), except in 2004 when it was classified as a RCRA Small Quantity Generator. Manifests for wastes shipped off site indicate materials identified as corrosive (waste code D002), wastewater treatment sludge from electroplating processes (waste code F006), plating bath solutions containing spent cyanide (waste code F007), and ignitable wastes (waste code D001). The COPCs for these sources include metals and petroleum hydrocarbons.

A 1970 inventory of the former tanks and equipment is included as Attachments 1a and 1b, and two schematics of the site (dates unknown) are included as Attachments 2 and 3. One 5,000-gallon aboveground storage tank (AST) in a subterranean vault with access was identified as on site for No. 2 fuel oil storage according to Petroleum Bulk Storage (PBS) No. 2-095214. It was installed on May 1, 1970 and removed on June 25, 2007.

7.2 Overwater Activities

This site is not adjacent to Newtown Creek or associated waterways. Information regarding overwater activities was not identified in documents available for review.

7.3 Spills

Documented spills at the site are summarized as follows (EDR 2010):

NYSDEC				
Spill No.	Spill Date	Close Date	Material Spilled	Remarks
8801453	05/17/88	03/04/94	No. 2 Fuel Oil	Undeterminable amount of fuel oil
				was spilled after employees noticed
				they could not maintain level in stand
				pipe. Groundwater affected. The EDR
				states that the tank was repaired,
				retested, and passed in October
				1988.

Notes: EDR – Environmental Data Resources, Inc. NYSDEC – New York State Department of Environmental Conservation

8 PHYSICAL SITE SETTING

Site-specific hydrogeologic information was not identified in documents available for review. The geologic setting for Newtown Creek consists of impermeable Precambrian and Paleozoic crystalline bedrock, overlain by the Upper Cretaceous Raritan formation, Magothy formation and Matawan Group (undifferentiated), unconsolidated Pleistocene deposits and upper Pleistocene glacial deposits and Holocene shore, beach salt-marsh deposits, and alluvium, along with local occurrences of artificial fill (Buxton et al. 1981; Soren and Simmons 1987). The primary areas of groundwater discharge are Newtown Creek and its tributaries and the East River (Misut and Monti 1999). In the vicinity of Newtown Creek, groundwater flow in the Upper Glacial aquifer is generally north and south towards the creek. With increased distance from the creek, groundwater will flow towards the nearest surface water body to discharge (Misut and Monti 1999). Incidences of perched groundwater may occur above the Upper Glacial Aquifer in some areas, particularly in formerly low-lying areas that have been filled. Groundwater flow at a specific property may differ from the regional pattern due to pumping for groundwater treatment or dewatering activities (Misut and Monti 1999), the presence of buried utilities, or other preferential pathways.

9 NATURE AND EXTENT (CURRENT UNDERSTANDING OF ENVIRONMENTAL CONDITIONS)

9.1 Soil

Soil Investigations Bank Samples Soil-Vapor Investigations

Information regarding on-site soil investigations was not identified in documents available for review.

9.2 Groundwater

Groundwater Investigations	🗌 Yes 🔀 No
NAPL Presence (Historical and Current)	🗌 Yes 🔀 No
Dissolved COPC Plumes	🗌 Yes 🔀 No
Visual Seep Sample Data	🗌 Yes 🗌 No 🔀 Not Applicable

Information regarding on-site groundwater investigations was not identified in documents available for review. Documents reviewed contained information that an on-site holding tank containing No. 2 Fuel Oil has an associated documented spill that affected groundwater (NYSDEC 2011a). The spill was closed by NYSDEC on March 3, 1994, but no sampling was conducted.

Yes 🔀 No

Yes 🖂 No

🗌 No 🔀 Not Applicable

Yes

9.3 Surface Water

Surface Water Investigation SPDES Permit (Current or Past) Industrial Wastewater Discharge Permit (Current or Past) Stormwater Data Catch Basin Solids Data Wastewater Data

9.3.1 Stormwater and Wastewater Systems

This site is located within the Newtown Creek WPCP sewershed. Stormwater and wastewater discharges from the site flow into a combined municipal sewer system. When the combined flows exceed the system's capacity, untreated CSOs are discharged to the East River (NYCDEP 2007).

9.3.2 Industrial Wastewater Discharge Permit

The information available shows the IWD Permit No. 03-P47-1 was, at a minimum, in effect from 1994 to the closing of the facility in 2005 (NYSDEC 2011b; NYCDEP 2003, 2001). According to the permit, there were two permitted discharge points located at the site: a 4-inch diameter riser from an effluent pipe, located in a pit below the floor level; and a 6-inch diameter housetrap, located in a pit below the floor level.

As described in Section 3, chromium plating and polishing operations began at this site in 1967. In the material reviewed for this summary, no information regarding the treatment and disposal of wastewaters generated at the site was found prior to approximately 1988. In 1988, it was noted that chromium plating and polishing at the site took wastewaters from the plating process and sent them to a reverse osmosis treatment system to separate leftover nickel from the plating process from wastewater. Collected nickel concentrate from wastewater was returned to nickel storage tanks and the wastewater was sent back to the last rinse in the nickel line. An ion exchange unit was added to the wastewater system prior to discharging to the sewer to prevent any residual nickel contamination (Fichera 1988). Additional treatment of wastewaters included a sludge accumulator tank with three dewatering drains, which dewatered sludge before it entered the filter process. The dewatering drains moved water into a tank where the pH was adjusted and then used in the next process (CPP 2000).

All the rinse wastewater from the chromium plating operations went into chromium reduction tanks where the chromium was reduced before it was mixed with other wastewater. This pretreatment system was made up of filtration, pH monitoring, chromium reduction, heavy metal precipitation, and pH neutralization (NYCDEP 2004). The neutralizing system handled 2,500 gallons per hour of generated waste (CPP [date unknown]).

The most recent permit is described at length in the following table.

Permit Type	Permit Number	Effective Date	Outfalls ¹	Volume	Frequency-Parameters
Industrial Wastewater Discharge Permit	03-P47-1December 19, 2003Discharge Point E1: A 4-inch diameter riser from an effluent pipe, located in an 101-inch by 115-inch by 45-inch pit, situated 64 inches from the interior wall facing South 5th Street and 1095	Unknown	The process wastewater discharge from point E1 is covered by the Federal Metal Finishing Point Source Category, 40 CFR Part 433, and shall not exceed these categorical standards: Federal Categorical Standards (40 CFR § 433.17 (a)) Maximum		
			inches from the exterior wall facing Berry Street.		Pollutant Daily Monthly Maximum Average (mg/L) (mg/L)
					Cadmium 0.11 0.07
					Chromium (Total) 2.77 1.71
					Copper 3.38 2.07
					Lead 0.69 0.43
					Nickel 3.98 2.38
					Silver 0.43 0.24
					Zinc 2.61 1.48
					Cyanide (Total) 1.20 0.65
					Total Toxic Organics2.13(TTO)2

Industrial	03-P47-1	December	Discharge Point M1: A 6-inch	The discharge from points E1 & M1 shall not exceed the								
Wastewater		19, 2003	diameter housetrap, located in a	following New York City Sewer Use Limits:								
Discharge			36 -inch by 36-inch by 86-inch pit									
Permit			86 inches below the floor level,	Sewer Use Limits								
			situated 54 inches from the	(15 R.C.N.Y. chapter 19)								
			exterior wall facing South 5th		Permissible							
			Street and 608 inches from the		Maximum	Daily Average						
			interior wall facing Wythe		Concentration For	Maximum						
			Avenue.		Any Given	Concentration						
				Pollutant	Time (mg/L)	(mg/L)						
				рН	5.0-11.0 Standard							
					Units							
				Cadmium	2.0	0.69						
				Chromium	5.0							
				(Hexavalent)								
				Copper	5.0							
				Lead	2.0							
				Mercury	0.05							
				Nickel	3.0							
				Zinc	5.0							
				Cyanide								
				(Amenable to	0.2							
				Chlorination)								
				Non-Polar	50.0							
				Material	50.0							

Notes:

1 – This site is within the Newtown Creek Sewershed.

2 – Defined in 40 C.F.R. § 433. 11 (e) as the sum of all quantifiable values greater than 0.01 milligrams per liter of the 111 toxic organic compounds listed in the IWD permit. Toxic organic compounds are comprised of two subcategories: volatile organic compounds (VOCs) and semi-volatile organic compounds. There are different sampling methods for each subcategory (see Part I, Sect. B. Monitoring Requirements).

CFR – Code of Federal Regulations

mg/L – milligram per liter

RCNY – Rules of the City of New York

The following table summarizes the violations of this permit that were available for review. Over the course of approximately 20 years of plating operations at the site, numerous instances of discharge violations were recorded and fines were issued by the New York City Department of Environmental Protection (NYCDEP).

Notice of Violation Number	Date of Offense	Chemical Species/Reason	Level (mg/L)	Permissible Level (mg/L)	Final Action	Final Action Date	
E025 932 657	03/19/85	Nickel	579.5	3.0			
E025 932 648	03/21/85	Zinc	16.36	5.0	Dismissed	12/08/87	
E04 8 840 029	01/11/88	Nickel	23	3.0			
E025 932 610					Dismissed	12/08/87	
E025 932 620					Dismissed	12/08/87	
E025 932 639					Dismissed	12/08/87	
E04 8 843 181	02/16/89	Cyanide	32.5	0.2			
E04 8 843 190	02/21/89	Copper	23	5.0			
E04 8 843 154	02/22/89	Failure to comply					
E04 8 839 322	03/05/90	Hexavalent chromium	9,950	5.0			
E04 8 839 340	03/05/90	Nickel	2,811	3.0			
E04 8 839 350	03/05/90	Lead	26	2.0			
E07 0 642 761	04/28/92	Zinc	16	5.0			
E06 0 964 678	08/22/94	Nickel	183	3.0	Fine	\$500	
E07 0 640 891	11/19/93	рН	3.68	5.0			
E07 2 175 904	01/03/95	Nickel	71	3.0	Fine	\$900	
E07 6 988 075	09/24/94	Nickel	3.72	3.0			
E07 2 165 886	01/03/95	Hexavalent chromium	12.6	5.0			
E103 910 905	03/06/00	Hexavalent chromium	18	5.0	Fine	\$250	
E103 910 960	07/10/00	Failure to comply with commissioner's order			Fine	\$250	

Notice of Violation Number	Date of Offense	Chemical Species/Reason	Level (mg/L)	Permissible Level (mg/L)	Final Action	Final Action Date		
E103 914 480	07/22/00	Nickel	23	5.0	Fine	\$750		
E103 910 914	04/04/00	Nickel	10.0	5.0	Fine	\$350		
E103 910 923	04/03/00	Nickel	13.0	5.0	Fine	\$350		
E103 910 932	03/06/00	Nickel	8.1	5.0	Fine	\$350		
E103 910 950	06/06/00	operational			Fine	\$350		
E103 910 941	06/21/00	Failure to comply with commissioner's order			Fine	\$500		
E120 065 647					Fine	\$350		
E120 065 588					Fine	\$350		
E123 575 073	01/23/02	рН	< 3	5.0	Fine	\$750		
E133 826 890	03/12/04	Nickel	9.3	3.0	Fine	\$350		
E133 531 561	07/22/04				Fine	\$250		
E133 831 051	03/14/04				Fine	\$250		
E133 832 326	07/14/04	Nickel	3.3	3.0	Fine	\$750		
E133 837 092	09/04				Fine	\$750		
E133 837 909	01/19/05	Nickel	3.38	3.0				
E133 845 782	04/11/05	Nickel	3.37	3.0				

Notes:

< – less than

mg/L – milligram per liter

The site was listed on New York City's Significant Noncompliance¹ List for the one year periods ending June 30, 1989, 1997, 1999, 2000, 2001, and 2002. This is not an exhaustive list because it reflects only the significant non-compliance lists presented in the annual Progress Reports on the NYCDEP Industrial Pretreatment Program (NYCDEP 1989, 1998, 2000a, 2000b, 2001, 2002).

9.3.3 Sampling Data

Multiple laboratory reports of wastewater sampling results from the site were available for review. One self monitoring report by Stablex-Reutter, Inc. in 1980 showed very high concentrations of total chromium (440 milligrams per liter [mg/L]), hexavalent chromium (360 mg/L), and nickel (410 mg/L), and may have occurred before the IWD Permit was issued (Stablex-Reutter, Inc., 1980). The remaining reports included analyses by the Industrial Wastes Control Section Laboratory of NYCDEP as well as outside testing laboratories (Group Research Corporation and Chemtech Consulting Group) to whom the site sent self-monitoring samples. These remaining reports span a period from 1988 to 2002, during which time the contaminant levels, especially of nickel and chromium, varied greatly.

The site also implemented several waste pretreatment steps during this period (Fichera 1988; CPP 2000). The following table summarizes the minimum and maximum reported concentrations for all of the laboratory reports. As this summary includes analyses done by the Industrial Wastes Control Section, there may be some overlap with the exceedances reported in the prior Notices of Violation table.

Constituent	Minimum	Maximum	Unit
Arsenic	0.000092	0.015	mg/L
Cadmium	<.00024	0.04	mg/L
Chromium, total	0.05	35	mg/L
Chromium, hexavalent	<0.002	12.6	mg/L
Copper	0.018	5.5	mg/L
Cyanide, total	<0.005	0.380	mg/L

¹ Significant noncompliance is defined in 40 CFR 403.8 (f) (2) (viii) (NYCDEP 2011b).

Constituent	Minimum	Maximum	Unit
Cyanide, amenable to chlorination	<0.005	0.380	mg/L
Lead	<0.005	0.49	mg/L
Mercury	<0.00006	0.00098	mg/L
Molybdenum	<0.0006	4.4	mg/L
Nickel	0.019	183	mg/L
Silver	<0.0015	10	mg/L
Zinc	<0.01	16	mg/L

Note:

< – less than mg/L – milligram per liter

9.3.4 Surface Water Summary

Currently, stormwater at the site is expected to infiltrate into the ground or flow overland towards local storm drains and the East River. Wastewater generated on site is treated and then discharged to the NYCDEP sewer and when combined flows exceed the system's capacity, untreated CSOs are discharged to the East River at Outfall NC-012. The multiple exceedences cited in the notices of violation and high metal concentrations in the laboratory analyses indicate that the site was a likely a historical pollution source.

9.4 Sediment

Creek Sediment Data

🗌 Yes 🗌 No 🖂 Not Applicable

Information regarding sediment investigations was not identified in documents available for review.

9.5 Air

Air Permit Air Data

Information related to air discharges at this site is limited to one air pollution complaint from 1988 (NYCDEP 1988).

10 REMEDIATION HISTORY (INTERIM REMEDIAL MEASURES AND OTHER CLEANUPS)

Information regarding on-site remedial activities was not identified in documents available for review.

11 BIBLIOGRAPHY/INFORMATION SOURCES

- Brownstoner.com, 2008. Blog post regarding Development Watch: 373 Wythe Avenue. Posted May 30, 2008. Accessed December 20, 2011. Available from: http://www.brownstoner.com/blog/2008/05/development-wat-239/
- Buxton et al. (Buxton, H.T., Soren, J., Posner, A., and Shernoff, P.K.), 1981. *Reconnaissance of the Groundwater Resources of Kings and Queens Counties, New York.* U.S.
 Department of the Interior, U.S. Geological Survey. Open-File Report 81-1186. 1981.
- CPP (Chromium Plating and Polishing), [date unknown]. Plant Schematic. Date unknown.
- CPP, 1990. Tabulation of Tanks and Equipment and Proposed Upgrades to Facility. April 27, 1990.
- CPP, 2000. City of New York Department of Environmental Protection, Bureau of Wastewater Pollution Control, Drainage Basin Monitoring Section, Grab Sampling Report. June 27, 2000.
- CPP, 2004. Reply to Commissioners Order #E24359. August 2, 2004.
- EDR (Environmental Data Resources, Inc.), 2010. EDR DataMap[™] Environmental Atlas[™] for "Newton Creek Queens, New York." November 4, 2010.
- Fichera (Chromium Plating and Polishing), 1988. Letter to: Thomas Vetter, New York City Department of Environmental Protection. Regarding: Nickel System. June 9, 1988.
- Google maps, 2011. Online Mapping Application, 373 Wythe Avenue, Brooklyn, New York 11211. Accessed December 20, 2011. Available from: http://maps.google.com/
- Misut and Monti (Misut, P.E., and Monti, J. Jr.), 1999. Simulation of Ground-Water Flow and Pumpage in Kings and Queens Counties, Long Island, New York. U.S. Geological Survey. Water-Resources Investigations Report 98-4071. 1999.

- NYCDCP (New York City Department of City Planning), 2011. Map PLUTOTM Ed.11V2 Vector Digital Data. December 2011.
- NYCDEP (New York City Department of Environmental Protection), 1988. Interbureau Notification of Industrial Waste – Air Pollution Complaint. April 28, 1988.
- NYCDEP, 1989. *Seventh Progress Report, April 1 to September 30, 1989.* New York Department of Environmental Protection, Bureau of Wastewater Treatment, Industrial Pretreatment Program. October 19, 1989.
- NYCDEP, 1998. *1998 Annual Progress Report, January 1, 1998 to December 31, 1998*. New York City Department of Environmental Protection, Bureau of Wastewater Treatment, Industrial Pretreatment Program.
- NYCDEP, 2000a. 2000 Annual Progress Report, January 1, 2000 to December 31, 2000. New York City Department of Environmental Protection, Bureau of Wastewater Treatment, Industrial Pretreatment Program.
- NYCDEP, 2000b. Industrial Wastewater Discharge Permit. Issued to: Chromium Plating and Polishing Corporation. Permit No. 00-P47-1. February 25, 2000.
- NYCDEP, 2001. 2001 Annual Progress Report, January 1, 2001 to December 31, 2001. New York City Department of Environmental Protection, Bureau of Wastewater Treatment, Industrial Pretreatment Program.
- NYCDEP, 2002. *2002 Annual Progress Report, January 1, 2002 to December 31, 2002*. New York City Department of Environmental Protection, Bureau of Wastewater Treatment, Industrial Pretreatment Program.
- NYCDEP, 2003. Industrial Wastewater Discharge Permit. Issued to: Chromium Plating and Polishing Corporation. Permit No. 03-P47-1. December 19, 2003.
- NYCDEP, 2004. IPP Inspection and Permit Section Establishment Inspection Report Form. Chromium Plating and Polishing Corporation. June 16, 2004.
- NYCDEP, 2007. Landside Modeling Report, Sewershed Characteristics and Model Calibration. City-Wide Long Term CSO Control Planning Project. Newtown Creek WPCP Service Area. Draft. New York City Department of Environmental Protection, Bureau of Engineering Design and Construction. July 2007.

NYSDEC (New York State Department of Environmental Conservation), 2011a. NYSDEC Spill Incidents Database. Accessed December 23, 2011. Available from: http://www.dec.ny.gov/cfmx/extapps/derexternal/index.cfm?pageid=2

NYSDEC, 2011b. NYSDEC Permit Database. Accessed December 22, 2011. Available from: http://www.dec.ny.gov/cfmx/extapps/envapps/index.cfm?district_id=47705&county_s wis_code=63&stimulus=0

Sanborn (Sanborn Map Company), 1950. *Insurance Maps of the Borough of Queens, City of New York.* Volume 3: Sheet 11. Original 1915, revised 1950.

Sherkin, J., 1967. Indenture to MRM Properties Corp. July 28, 1967.

- Soren and Simmons (Soren, J. and Simmons, D.L.), 1987. Thickness and Hydrogeology of Aquifers and Confining Units Below the Upper Glacial Aquifer on Long Island, New York. U.S. Geological Survey. Water-Resources Investigations Report 86-4175. Scale 1:125,000. 1987.
- Stablex-Reutter, Inc., 1980. Wastewater Sampling Laboratory Report, Test Report No. S-1256. Chromium Plating and Polishing. December 9, 1980.

Visual Display, Inc., 2005. Letter to NYCDEP. May 26, 2005.

12 ATTACHMENTS

Figures

Figure 1

Site Vicinity Map: Chromium Plating and Polish

Tables

 Table 1
 Potential Areas of Concern and Transport Pathways Assessment

Supplemental Attachments

Attachments 1a and 1b	Figure 2: Tabulation of Tanks and Equipment and Proposed
	Upgrades to Facility, April 27, 1990 (CPP 1990)
Attachment 2	Figure 3: Schematic of Site Circa 2004 (CPP [date unknown])
Attachment 3	Figure 4: Schematic of Site Circa 2005 (CPP ca. 2005)

Table 1

Potential Areas of Concern and Transport Pathways Assessment – Chromium Plating and Polish

Potential Areas of Concern	r	Media	a Imp	acte	d							СОР	Cs								Ро	tential	Complet	e Pathv	vay	
							TPH		V	/OCs																
Description of Areas of Concern	Surface Soil	Subsurface Soil	Groundwater	Catch Basin Solids	Creek Sediment	Gasoline-Range	Diesel – Range	Heavier – Range	Petroleum Related (e.g., BTEX)	vocs	Chlorinated VOCs	svocs	PAHS	Phthalates	Phenolics	Metals	PCBs	Herbicides and Pesticides	Dioxins/Furans	Overland Transport	Groundwater	Direct Discharge – Overwater	Direct Discharge – Storm/Wastewater	Discharge to Sewer/CSO	Bank Erosion	Air Releases
Spills	٧	٧	٧	?	?	?	٧	?	?	?	?	?	?	?	?	?	?	?	?							-
Wastewater Discharge	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	٧	?	?	?							
Chemical Storage Tanks	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?							
Petroleum Storage Tanks	?	?	?	?	?	٧	٧	٧	V	V	V	V	٧	?	?	?	?	?	?							

Notes:

v – COPCs are/were present in areas of concern having a current or historical pathway that is determined to be complete or potentially complete.

? - There is not enough information to determine if COPC is/was present in area of concern or if pathway is complete.

--- Current or historical pathway has been investigated and shown to be not present or incomplete.

BTEX – benzene, toluene, ethylbenzene, and xylene

COPC – constituent of potential concern

CSO – combined sewer overflow

PAHs – polycyclic aromatic hydrocarbon

PCB – polychlorinated biphenyl

SVOC – semi-volatile organic compound

TPH – total petroleum hydrocarbon

VOC – volatile organic compound

Figure 1 Site Vicinty Map Draft Upland Site Summary: Chromium Plating and Polish Newtown Creek RI/FS

SUPPLEMENTAL ATTACHMENTS

Attachment 1a

1

E_

Lange L

i,

						- TANK	AND E	QUIPMENT	TABULATION .					
E	No.	Rocess	TAN: SIZE	TAJK MATERAL	Lung . JATing	Putsh + EITERIAR	TEMP PF	· coil	TEMP CONTROL	Contract VALVE	074.~	oversion	ESHA UST	12 AL-1
ſ	1	SOAK CLEAN	13:01.501.54	H.HES	NONE	PAWT	100+F	PLATELAILS	2. sely Acrus	_	2- 6264 . 14.5	2. cpla .M.F	BISOCAN	NONE
ſ	2	ELECTED - Sind	13.0.15.0.5%	la unes .	NONE	PAINT	180-17	PLATE CAILS	2-sile Herins	-	1. cpla.m.I	Z. cal 4. M.E	BAST LA:4	1.0. E
	3	COLD WATER RUISE	13:0- 4: 1-51-	1/4- HIZS .	Noule	HI.JT	AMBIENT	-	-	-	I cole - Mr	Z. COLO		1º 45.
	4	eleurzo-Acio	13 5'0 - 5'6'	14. 4125	Kazestill	. F.IT	130.15	RELON	the sele acrude	-	E" PLAJGE	NONE	8150 cm	JouE
	5	(0-0 WA:ET & NE"	13-0 - 4 4 - 5-6-	1/4 H.25	plasnool	Masicol	AMBENT	_	-	_	2. FLANGE	2" FLANGE		1' PAL Pr: 72.0
	6	Electricite	13	1/1 · 1/185	Jugolia	PAL AT	1807-	THO 34-71 CRS	2. 164 10100		Leter . N.E	E-IPLL-HS	BASALEN	Nove
	7	COLD WATER RINGE	11-5-14-4-5-6	1/0 Has	JONE	Tu.LA	AND EN	-	;-	-	L-CPLG .Id.T.	Z-CPib M.E.		" W.S.
	8	Electro-Acio	13-9 - 5'-9 - 5'4'	1/4-ites	LOEOSEAL	PANT	A ABIE-T	-			2. Fidnes			
t	9	Calo UNEZ ENSE	13'0 -0.3.54	14-1-15	PASTIN	LAS1119L	Internet	-		_	2: FLANGE	2. THANGE		PUL DAM.O.
t	10	oull wickel plant	1310 - 510 - 511.7	"Id +125	COLDICAL	Pault	105'F	IND - "THANNAT	SARGA EIG-II	2% 504000		NONE		IN PAL
*		BRIGHT WAYEL PLUE	(10) (6) (6)	14-15-5	Kadasedt	PAINT	145*7	Tuber r firdunund	SARCE LICH	2%	Jaur	ido alti		14.00
		ARIONT WEST STATION	(3:a:-5'a -5%)	'la HRS	Logarcal	٣. دو	145%	Tulo . I' TTAW	54.TES & IC -11	1% Solenes	2028	alo al C		, - Ac
	16	BRIGHT STREET FORCE (111)		10 mills	Eldelan	FALAT	ANARAT	70000 1011			1. Elauret			PAL
ł		and alut		14 .13	fam. fd.	81.5	95*6	0.16 12/07 625	SARIO EIC .II	1- Solewow			6590.00	Distate
		BRASI PLATE	130 - 3 - 3 - 5 - 5	14-24	Claulaul					Mage= 167		1.56.15		PPC P
	13	La un diant	13:0 10 0 15:0	1/41/101			II MOICAI	range 14.00	SARCE EILC-I	2- 192 . 1. 1. 1. 0. 0 . 7			in Ira is	PA P
		CHIZOIAL POITE	10.50.54	14 19-1	Kozosena			MALLS WAD ENCS	50 150.0	1-174 Self-ood wing	News		10,50 CFM	PPAL A
	17	COLD WARK KINSE	11:07 414 15-6-	14. 11/25	pensisae	Mini	MMD-E-T				e. Flazar	E- FLANCE		PISTER D
	18	COLO WATER RAUSE	13:0-4:4-5:6	.14.4.28	Flasmac	P.4	ALL BIE AND	Two .'M. 0.0 rW		÷	I'FLANGE	2-100-06		0151018
	. 19 .	HOT WATER RUISE	13'0 14'4'15'0	161 100 3.5	Newl	Maine	100 %	04E 114. 0.0.1416	2-310- 465.24		2 2 2 2 2 3	1.000-26		
+	63	LACOJER DIP	13'0' - 4'0'-5'6'	IIGA BOD S.S.	No. (95°F	304 1.5, Cal	P ULF KTING	4	2.2010 .25	N 3-4"		4
È	"	ORYER	130- 80-56	1/4- H2S	No.15	PALST	100*F	TW/0 21' /61' 641	SARCE FIL CH	- SEE SPELS	1.0010-142	NONE		
	11	ZING PLATE	150.120.12.6.	'4' HRS	Kerescill	PAT	15%	PLATE CALLS	50* -250*	while they	Now5'	13,45	6514 CTM	
	23	Z. WE PLATE CRUT.	50.50.50	1/4 HZS	LORNOAL	PAINT	75+0	ALATE COILS	501-2501	VALUE -HOU	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Gisseren	
	24	COLO WATER RUSE	13'0 +4'4'+5'-6'	.a uz .	PERSIDE	10.5-	A-18Kini	+	······································		2.214.145	2-1:64		P518.6.
	25	CHIZOMATE DIP	13	161 105 S.C.	Jawf	NONE	RHERNT		· · · · · · · · · · · · · · · · · · ·		zicola s.s.	NONE		4
	26	COLD WATER RIWLE" .	13:0-1:4-5:-	'H- 425	pensional	131	AMB-ENT"	-	-		2.6.04.146	2.Fin.16		Disr26
1	27	COPPER PLATE (FUT.)	13:0-5:0-54	. 1. 462	LOSISSEAL	PH:NT	1507"	PLAIE LO. 1	50 - 280.	VALUE	Nowe	NONE	6530CFN!	
*	28	COLO WATER RUSE (FUT)	15-0 - 4-4-1546	114 Has	Masinsal	PANT	ANDIENT	-	· ·		2" FLANGE	2. FL4~40E		18420.
	29	NOT WATER RIVE	150.00.56	1164.3045 5	1/2-15	-10-1E	las F	304 51 10 -1	2" SE in Acruso		2-016.3.5	2. 000.000		
	30	UZHER.	10 140 15%	·/d · HRS	NONE	AL NT	200 45	SEE FARS	· SEC 1845	SER SHETL	2. ale . M.T	~~~é	—	
	3/	WASTE THEAT - CHESURE	5 215-246	·10-11.25	Plasmi	Norte	HIABIENT	-	— ;	-	2-14.55	2.501-65		-
	32	COLD WATER RUSE	30-14-54	10.1125	Nowe	PANT	AMBIENT	-	- 1	· · · ·	2-col4-11.I.	2.410-14.5.	-	1.4.5. P.
	33	BUTFING LOWF BUT IN	15-2-52-5-4	10 1.45	NOWE	PA.ur	180' F	Pure carles	I'ME ALTAS	-	2-244 -115	2- CAG-MI	BISD CAM	1 WS W.
t	3.4	COLO WATTER RUDE	12:0:4: +5'-	14	Nait	prima	diadat. J."				7. CHUS - H.T.	2- 646-14-	-	Puls A

* DECORD FORME Mathin

NEWT-0031109 NC 027010

 $\mathcal{I} = \mathcal{I} \mathcal{D}$

NEWT-0031110

M. 47-L	Konusral		
14 HES			
	FBLEGISS		
	Fachelit		
574 21155	Noni		
To Salt			
10-4.25	Asracles:		
1	FORZELISS		
	1.3126(4:		
	NONE		
	NANG		
	None		
	Nowie		
	Noné		
	SNEN		
-			

	<u> </u>	1				
1	\mathbf{i}		ACID DIP & LAC	2	NICKEL 10 - 11 STA	— Attachment 3
RESEC	VE .		2000 gal.	0	. gal each.	
17500	gal).		- <u></u>	3		
	-	_⊢	RINSE- 7 1g.p.m.	_2_	NICKEL 12-13-14 STAG	
	-		1200 gal.	-12-	al each.	
	< ·	┨─┤-	1			<u> </u>
land.	s: \ -		ELECTRO C STAG		NICKEL 15 - 16 STAG	:
ACCUMU	LATOR				gal, each	
1500	906/-	H+		-9-		
			1200 gal.	-5-		·
F.A	510	1	I	-3-		
6	<u> </u>		1	-151-	18-19 50	
P.H.					RINSE-1200 (21) cach	
1000	37	11			Carry Conceptions	
4 1	13		DINCE . 3 DECARDE		PINSE 20 CTAC RIVE	·. ·
	XX		1200 gal.		2000 gal.	
REDUCER	G 7	11			% o	
1000 J			ELECTRO Z STWG	_ _ _ _	FARME 21 RECYCLE PIENN	
	IIY .		CLEAN 2000 gal		RINSE 1200 gal.	<u> </u>
RESERVA	TANK	11			2	
1000 9AL		+++			RINSE 22 4 g.p.m.	
T A			2000 gal.		1200 001	
Parie	₩	12			X	
P.H.2		10			RINSE 23 STag	
Y A		Ð			1200 gal.	
		12		_		T
PH.	111	121			RINSE 24 STAG	- EINAL
1000		11			2000 gal.	-(<u>P.H.</u>)
\sim		\uparrow			CUROME 25	ADJUSTER 5
(RESERVE)						
9-1		++	>			
		R			EDRAG-ONE ZC	-
T	N .	W			1200 ga	
	· 2	N		10		
1 3 4	L	5		0	RINSE Z7 RECYCLE	
ES	U .	h_{1}	2. 	2	1200 gal.	·.
Part	non .	M		-12-	·	
IT .	75	-K			RINSE 2 8 RECYCLE	
10-11	e ()	14			1200 gal.	
	÷ .	++		-2-	201	-
		+-+			RINSE Z 7 4 g+p-m-	
51 1	-	+			1200 gal.	-
1				-1-1-	4 30	YC DEP Div. of Pollution Control
	:=		tion and the second		RINSE 1200	n Resp. to FOIL #12932
		(4)		h	1200 gal.	14