Determination of Inorganic Anions by Ion Chromatography

1. Scope and Application

Matrices: Drinking water, surface water, mixed domestic and industrial wastewaters, groundwater, reagent waters, solids (after extraction) leachates (when no acetic acid is used).

Definitions: See Alpha Laboratories Quality Manual Appendix A.

Regulatory Parameter List:

<table>
<thead>
<tr>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromide</td>
</tr>
<tr>
<td>Chloride</td>
</tr>
<tr>
<td>Fluoride</td>
</tr>
<tr>
<td>Nitrate – N</td>
</tr>
<tr>
<td>Sulfate</td>
</tr>
</tbody>
</table>

The data report packages present the documentation of any method modification related to the samples tested. Depending upon the nature of the modification and the extent of intended use, the laboratory may be required to demonstrate that the modifications will produce equivalent results for the matrix. Approval of all method modifications is by one of the following laboratory personnel before performing the modification: Area Supervisor, Laboratory Services Manager, Laboratory Director, or Quality Assurance Officer.

This method is restricted to use by or under the supervision of analysts experienced in use of ion chromatography and in the interpretation of ion chromatograms. Each analyst must demonstrate the ability to generate acceptable results with this method by performing an initial demonstration of capability, analyzing a proficiency test sample and completing the record of training.

After initial demonstration, ongoing demonstration is based on acceptable laboratory performance of at least a quarterly laboratory control sample or acceptable performance from an annual proficiency test sample. A major modification to this procedure requires demonstration of performance. The identification of major method modification requiring performance demonstration is directed by the QA Officer and Laboratory Director on a case-by-case basis.

2. Summary of Method

A small volume of sample is introduced into an ion chromatograph. The anions are separated and measured, using a system comprised of a guard column, analytical column, suppressor device, and conductivity detector.

2.1 Method Modifications from Reference

Use of other eluents that improve method performance are minor modifications of the method and are considered by the method to be acceptable.
3. Detection Limits

The laboratory follows the procedure found in 40CFR Part 136 to determine the MDL on a semi-annual basis. The method detection limits determined by the laboratory are on file for review.

4. Interferences

4.1 Interferences can be caused by substances with retention times that are similar to and overlap those of the anion of interest. Large amounts of anion can interfere with the peak resolution of an adjacent anion. Sample dilution and/or fortification can be used to solve most interference problems associated with retention times.

4.2 Method interferences may be caused by contaminants in the reagent water, reagents, glassware, and other sample processing apparatus that lead to discrete artifacts or elevated baseline in ion chromatograms.

4.3 Samples that contain particles larger than 0.45 microns and reagent solutions that contain particles larger than 0.20 microns require filtration to prevent damage to instrument columns and flow systems.

4.4 Any anion that is not retained by the column or only slightly retained will elute in the area of fluoride and interfere. Known coelution is caused by carbonate and other small organic anions. At concentrations of fluoride above 1.5mg/L, this interference may not be significant, however, it is the responsibility of the user to generate precision and accuracy information in each sample matrix.

4.5 The acetate anion elutes early during the chromatographic run. The retention times of the anions also seem to differ when large amounts of acetate are present. Therefore, this method is not recommended for leachates of solid samples when acetic acid is used for pH adjustment.

4.6 The quantitation of unretained peaks should be avoided, such as low molecular weight organic acids (formate, acetate, propionate, etc.) which are conductive and coelute with or near fluoride and would bias the fluoride quantitation in some drinking and most waste waters.

4.7 Any residual chlorine dioxide present in the sample will result in the formation of additional chlorite prior to analysis. If any concentration of chlorine dioxide is suspected in the sample, purge the sample with an inert gas (argon or nitrogen) for about five minutes or until not chlorine dioxide remains.

5. Safety

The toxicity or carcinogenicity of each reagent and standard used in this method is not fully established; however, each chemical compound should be treated as a potential health hazard. From this viewpoint, exposure to these chemicals must be reduced to the lowest possible level by whatever means available. A reference file of material data handling sheets is available to all personnel involved in the chemical analysis. Additional references to laboratory safety are available in the Chemical Hygiene Plan.

All personnel handling environmental samples known to contain or to have been in contact with municipal waste must follow safety practices for handling known disease causative agents.

Sulfuric acid used in this method has the potential to be highly toxic or hazardous.
6. Sample Collection, Preservation, and Handling

6.1 Sample Collection
Samples are collected in glass or plastic bottles of sufficient volume to allow replicate analyses of the anions of interest.

6.2 Sample Preservation
Samples are refrigerated at 4°C.

6.3 Sample Handling
The sample holding time is 48 hours for the following anions: Nitrate –N.
The sample holding time is 28 days for the following anions: Bromide, Chloride, Fluoride, and Sulfate.

7. Equipment and Supplies

7.1 Balance: Analytical, capable of weighing to 0.0001g.

7.2 Ion Chromatograph: Analytical system (Dionex ICS-2000) complete with ion chromatograph and all required accessories including syringes, autosampler, analytical columns, compressed gasses and detectors.

7.2.1 Anion guard column: AG-18 (Dionex PN 060551) A protector of the separator column. If omitted from the system the retention times will be shorter. Usually packed with a substrate the same as that in the separator column.

7.2.2 Anion analytical column: AS-18 (Dionex PN 060549). This column produces the separation shown in Figure 1.

7.2.3 Anion suppressor: ASRS Ultra II 4mm (PN 061561). The suppressor column is packed with a high capacity cation exchange resin that is capable of converting the eluent and separated anions to their respective acid forms.

7.2.4 Detector: DS6 (PN 057985) Temperature controlled, heated conductivity cell

7.2.5 Eluent Generator: EG40 (Dionex PN 058900) Prepares the eluent electronically, controlled by the software; equipped with KOH cartridge.

7.3 Software: The Dionex IC Instrument uses Chromeleon Software.

7.4 0.45µm Membrane Filter Syringes.

7.5 Volumetric Flasks: Various volumes.

7.6 Volumetric Pipets: Various volumes.

7.7 0.5mL Vials with Caps: Dionex PN 038142.
8. Standards and Reagents

Note: All analytical standards used for calibration and calibration verification must be traceable to NIST. Each standard is recorded in a Logbook and unique ID is assigned to each standard. The unique IDs must also be included in all analytical sequences.

8.1 Reagent Water: Deionized water, free of the anions of interest. Water should contain particles no larger than 0.20 microns.

8.2 Eluent Solution: 32mM KOH, Prepared by the Eluent Generator.

8.3 Stock Calibration / ICV Standard Solutions, 1000mg/L (1mg/mL): Stock standards for all analytes are usually purchased as certified solutions. Certificates of analysis are kept on file. However, if it is necessary, the Stock Solutions may be prepared from ACS reagent grade materials (dried at 105°C for 30 minutes) as listed below. The ICV Standards must be prepared from a different source than the calibration standards.

NOTE: Stock calibration/ ICV standards are stable for at least six months when stored at 4°C. Dilute working standards are prepared fresh daily.

8.3.1 Standard 1: Fluoride Stock Standard, 1000mg F⁻/L
In a 250mL volumetric flask, dissolve 0.5526g of sodium fluoride (NaF, CASRN 7681-49-4) in about 200mL reagent water. Dilute to the mark with reagent water, and invert to mix.

8.3.2 Standard 2: Fluoride Stock Standard, 100mg F⁻/L
In a 250mL volumetric flask, pipet 25mL of Standard 1, dilute to the mark with reagent water, and invert to mix.

8.3.3 Standard 3: Chloride Stock Standard, 1000mg Cl⁻/L
In a 250mL volumetric flask, dissolve 0.4121g of sodium chloride (NaCl, CASRN 7647-14-5) in about 200mL reagent water. Dilute to the mark with reagent water, and invert to mix.

8.3.4 Standard 4: Bromide Stock Standard, 1000mg Br⁻/L
In a 250mL volumetric flask, dissolve 0.3219g of sodium bromide (NaBr, CASRN 7647-15-6) in about 200mL reagent water. Dilute to the mark with reagent water, and invert to mix.

8.3.5 Standard 5: Bromide Stock Standard, 100mg Br⁻/L
In a 250mL volumetric flask, pipet 25mL of Standard 4, dilute to the mark with reagent water, and invert to mix.

8.3.6 Standard 8: Nitrate Stock Standard, 1000mg NO₃⁻-N /L
In a 250mL volumetric flask, dissolve 1.5170 g of sodium nitrate (NaNO₃, CASRN 7631-99-4) in about 200mL reagent water. Dilute to the mark with reagent water, and invert to mix.

8.3.7 Standard 9: Nitrate Stock Standard, 100mg NO₃⁻-N /L
In a 250mL volumetric flask, pipet 25mL of Standard 8, dilute to the mark with reagent water, and invert to mix.
8.3.8 **Standard 12: Sulfate Stock Standard, 1000mg SO$_4^{2-}$/L**

In a 250mL volumetric flask, dissolve 0.4535 g of anhydrous dibasic, potassium sulfate (K$_2$SO$_4$, CASRN 7778-80-5) in about 200mL reagent water. Dilute to the mark with reagent water, and invert to mix.

8.3.9 **Stock Bromide Standard, 1000ppm**

Commercially available. Certificate of analysis required and kept on file. Use separate sources for the ICV and Calibration standards listed below.

8.3.9.1 **ICV Bromide Standard, 100ppm**

In a 100mL volumetric flask, add 1mL of Stock 1000ppm Bromide standard (Section 8.4.13). Bring to volume with reagent water.

8.4 **Working Mixed Stock Standard A (Calibration Stock)**

In a 200mL volumetric flask, transfer using volumetric pipets, 2mL each of Standards Bromide 1000ppm and Nitrate 1000ppm; 20mL of Chloride 1000ppm and Fluoride 100ppm (Section 8.3). Dilute to the mark with reagent water and invert to mix. Store at 4 ± 2°C for up to one month.

This makes Standard A containing F$^-$, Cl$^-$, NO$_2^-$ -N, Br$^-$, NO$_3^-$ -N and SO$_4^{2-}$ at the concentrations of 10, 100, 10, 10 and 200ppm respectively.

8.4.1 **Analyte Matrix Spike Solution**

Volumetrically prepare the spike solution by bringing 1.0 mL of the calibration stock standard (Section 8.4) up to a 25mL final volume with the sample.

8.5 **Working Mixed Standards B through G (Calibration Curve)**

Working mixed standards B through F are prepared by diluting Standard A as summarized in the following Table. These are prepared fresh as needed for calibration.

<table>
<thead>
<tr>
<th>Std.</th>
<th>Std. A (mL)</th>
<th>Final Vol. (mL)</th>
<th>F$^-$</th>
<th>Cl$^-$</th>
<th>Br$^-$</th>
<th>NO$_3^-$ -N</th>
<th>SO$_4^{2-}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>5</td>
<td>10</td>
<td>5.0</td>
<td>50.0</td>
<td>5.0</td>
<td>5.0</td>
<td>100.0</td>
</tr>
<tr>
<td>C</td>
<td>5.0</td>
<td>25</td>
<td>2.0</td>
<td>20.0</td>
<td>2.0</td>
<td>2.0</td>
<td>40.0</td>
</tr>
<tr>
<td>D</td>
<td>1.25</td>
<td>25</td>
<td>0.5</td>
<td>5.0</td>
<td>0.5</td>
<td>0.5</td>
<td>10.0</td>
</tr>
<tr>
<td>E</td>
<td>0.5</td>
<td>25</td>
<td>0.2</td>
<td>2.0</td>
<td>0.2</td>
<td>0.2</td>
<td>4.0</td>
</tr>
<tr>
<td>F</td>
<td>1 of Std D</td>
<td>10</td>
<td>0.05</td>
<td>0.5</td>
<td>0.05</td>
<td>0.05</td>
<td>1.0</td>
</tr>
<tr>
<td>G</td>
<td>0.5 of Std D</td>
<td>10</td>
<td>0.025</td>
<td>0.25</td>
<td>0.025</td>
<td>0.025</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Example: To make up Standard B, take 25mL of Standard A in a 10mL volumetric flask and dilute to the mark with reagent water.
Note: The dynamic range for the method is two orders of magnitude. The concentrations for the standards could be changed to bracket the concentrations of the samples to be analyzed.

8.6 ICV Stock Standard (Second Source Verification)

To a 200mL volumetric flask add 20mL of the following standards: Chloride 1000ppm and Sulfate 1000ppm, and 2mL of Fluoride 1000ppm, Bromide 1000ppm and Nitrate 1000ppm (Section 8.3). Dilute to volume with reagent water.

8.6.1 ICV Working Standard / LCS Solution

In a 25mL volumetric flask, add 1mL of the ICV Stock Standard. Bring to volume with reagent water. Store at 4 ± 2°C. Prepare weekly.

ICV working standard will have the following concentrations: 0.4 mg/L for Fluoride, Nitrate and Bromide; 4.0 mg/L for Chloride and Sulfate.

8.7 CCV Working Solution

The CCV Working Solution is the equivalent of Standard D above in Section 8.5. Store at 4 ± 2°C. Prepare weekly.

9. Procedure

9.1 SET-UP

9.1.1 Determination of Linear Calibration Range (LCR)

The LCR must be determined initially and verified every six months or whenever a significant change in instrument response is observed or expected. The initial demonstration of linearity must use sufficient standards to ensure that the resulting curve is linear. The verification of linearity must use a minimum of a blank and three standards. If any verification data exceeds the initial values by ± 10%, linearity must be reestablished. If any portion of the range is shown to be nonlinear, sufficient standards must be used to clearly define the nonlinear portion.

9.1.2 Prime Pump: The pump must be primed prior to analysis, to ensure that there is no gas entering the column.

9.1.3 Monitor Baseline: From the main Panel screen, press the “Startup” Button. This will turn on, in order, the pump, the eluent generator, and the conductance cell. Allow the instrument to warm up for 10 – 20 minutes to ensure the baseline is stable and flat.

9.1.4 While the baseline stabilizes, the sample sequence can be written and the autosampler may be loaded.

9.1.5 When the baseline is stabilized, the sample sequence may be loaded into the analytical run, and started from the Chromeleon software.

9.1.6 Operating Conditions: Dionex IC Instrument

Eluent Concentration: 32mM KOH
Flow rate: 1.0mL / minute
Injection volume: 100µL
ASRS: ON

Conductivity Cell Temperature: 30 °C

9.1.7 Monitor instrument stability: Prior to QC sample and sample analysis, analyze a DI water blank to ensure the instrument is stable.

9.1.8 Sample filtration: Autosampler vials are equipped with a filter. If additional filtration is necessary, samples may be filtered through a 0.45µm membrane filter attached to a syringe. NOTE: If samples require filtration, all associated batch QC samples must also be filtered.

9.1.9 Extraction of solid materials: Add a volume of reagent water equal to 10 times the weight of dry solid material taken as a sample. This slurry is mixed for 10 minutes using a magnetic stirring device. Filter the resulting slurry before injecting using a 0.45µ membrane filter attached to a syringe. Care should be taken to show that good recovery and identification of peaks is obtained with the user's matrix through the use of matrix spikes (Section 10.5).

9.2 Calibration Curve Generation

For each analyte of interest, prepare calibration standards at a minimum of three concentration levels and a blank by adding accurately measured volumes of one or more stock standards (Section 8.5) to a volumetric flask and diluting to volume with reagent water. If a sample analyte concentration exceeds the calibration range, the sample may be diluted to fall within the range.

Using injections of 100µL of each calibration standard, tabulate peak height or area responses against the concentration. The results are used to prepare a calibration curve for each analyte. During this procedure, retention times must be recorded.

The calibration curve for each analyte is prepared by plotting instrument response against the standard concentration. A correlation coefficient of 0.995 or greater is considered acceptable for all analytes.

9.2.1 Initial Calibration Verification (ICV/LCS): The calibration curve must be verified on each working day, and after every 20 samples. The ICV/LCS sample is prepared from a different source than that used for the calibration standards (Section 8.6). If the response or retention time for any analyte varies from the expected values by more than ± 10%, the analysis must be repeated, using fresh calibration standards. If the results are still more than ± 10%, a new calibration curve must be prepared for that analyte.

9.3 Standardization (Continuing Calibration Verification)

This standard (Standard D: Section 8.5) is prepared weekly. The CCV is analyzed at the beginning of each run, after every tenth sample, and at the end of the sample run. The % Recovery of this standard must be within ± 10% of the calibration standard. Refer to Section 10.3 if % Recovery falls outside of the acceptance range.
9.4 Equipment Operation and Sample Analysis

9.4.1 An automated constant volume injection system is used. Load and inject a fixed amount of well-mixed sample. Flush injection loop thoroughly, using each new sample. Use the same size loop for standards and samples. Record the resulting peak size in area or peak height units.

9.4.2 The width of the retention time window used to make identifications should be based upon measurements of actual retention time variations of standards over the course of a day. Three times the standard deviation of a retention time can be used to calculate a suggested window size for each analyte. However, the experience of the analyst should weigh heavily in the interpretation of chromatograms.

9.4.3 If the response for the peak exceeds the working range of the system, dilute the sample with an appropriate amount of reagent water and reanalyze.

9.4.4 If the resulting chromatogram fails to produce adequate resolution, or if identification of specific anions is questionable, fortify the sample with an appropriate amount of standard and reanalyze.

Note: Retention time is inversely proportional to concentration. Nitrate and sulfate exhibit the greatest amount of change, although all anions are affected to some degree. In some cases this peak migration may produce poor resolution or identification.

9.5 Preventative Maintenance

Follow the Preventative Maintenance Schedule as outlined on the Dionex ICS-2000 CDROM.

As Needed
- Check the eluent reservoir to see if it needs to be refilled.

Daily
- Check the ICS-2000 component mounting panel for leaks or spills. Wipe up spills. Isolate and repair leaks. Rinse off any dried eluent with reagent water.
- Check the waste container daily and empty when needed.

Weekly
- Once a week, check fluid lines for crimping or discoloration. Relocate any pinched lines. Replace damaged lines.
- Check the junctions between the pump heads and the pump casting for evidence of liquid leaks. If piston seal wash tubing is not connected, check the drain tubes at the rear of the pump heads for evidence of moisture. Normal friction and wear may gradually result in small liquid leaks around the piston seal. If unchecked, these leaks can gradually contaminate the piston housing, causing the pump to operate poorly. If leaks occur, replace the piston seals.
- Check the end-line filter (PN 045987) and change if needed. When new, end-line filters are pure white. If the system is in continuous operation, change the end-line filter weekly, or whenever it becomes discolored. Replace the filter more often if bacterial buildup is visible or if the eluent does not contain solvent.
NOTE: It is especially important to regularly replace end-line filters when using aqueous eluents, which may contaminate the filter with bacteria or algae. The bacterial buildup may not be visible.

Yearly (performed by Dionex technician)
- Calibrate the cell.
- Calibrate the vacuum degas assembly
- Replace the pump piston rinse seals and piston seals.

9.6 Calculations
9.6.1 Compute the sample concentration by comparing sample response with the standard curve. Multiply the result by the appropriate dilution factor.
9.6.2 Report only those values that fall between the lowest and the highest calibration standards. Samples exceeding the highest standard should be diluted and reanalyzed.

10. Quality Control and Data Assessment
The laboratory must maintain records to document the quality of data that is generated. Ongoing data quality checks are compared with established performance criteria to determine if the results of analyses meet the performance characteristics of the method. When results of sample spikes indicate atypical method performance, a calibration verification standard is used to confirm the measurements were performed in an in-control mode of operation.

10.1 Demonstration of Capability
The analyst must make an initial, one-time, demonstration of the ability to generate acceptable accuracy and precision with this method. Each time a method modification is made, the analyst is required to repeat the procedure.

When one or more of the parameters tested fail at least one of the acceptance criteria, the analyst must locate and correct the source of the problem and repeat the test for failed parameters of the method.

Repeated failure confirms a general problem with the measurement system or analytical technique of the analyst. If the failure repeats, locate and correct the source of the problem and repeat the test for all parameters listed in the method.

10.2 Method Blank
One Method Blank consisting of an aliquot of reagent water is analyzed with each batch of 20 samples or less. Data produced are used to assess contamination from the laboratory environment. Method Blank results must be less than the Reporting Limit (RL) for the analyte.

Note: If samples have to be filtered prior to analysis, all associated batch QC must also be filtered.

10.3 Continuing Calibration Verification (CCV) Standard
The CCV Standard is the equivalent of Standard D in Section 8.5. Store at 4 ± 2°C. Prepare weekly. The CCV is analyzed at the beginning of each run, after every tenth sample, and at the end of the sample run. The % Recovery of this standard must be within ± 10% of the calibration standard.
10.4 Initial Calibration Verification (ICV) Standard / Laboratory Control Sample (LCS)

The ICV/LCS is analyzed at the beginning of each run, but after the CCV standard. This standard is prepared from a different source than that used to prepare the calibration standards (Section 8.6). The % Recovery of this standard must be within ± 10% of the calibration standard.

10.5 Matrix Spike

Prepare and analyze one spiked sample per batch of 20 samples or less (Section 8.4.1). Recovery of the Matrix Spike must be within the Laboratory defined control limits (Section 10.7).

10.6 Duplicates

Prepare and analyze one duplicate sample per batch of 20 samples or less. The RPD for the duplicate measurements must be within the Laboratory defined control limits (Section 10.7).

10.7 Control Limits

The laboratory maintains performance records to document the quality of data that is generated. Method accuracy for samples is assessed and records maintained. After the analysis of 20 spiked samples, and 20 laboratory control samples, calculate the average percent recovery (R) and the standard deviation of the percent recovery (S).

Control limits for the method parameters are generated by the QC staff and distributed to the analysts. The control limits are calculated based on in-house performance data. The limits are compared to the control limits found in the reference method.

10.8 Analytical Sequence

- Instrument calibration
- DI Blank
- CCV
- ICV
- Ten samples
- CCV
- Blank
- Shut-down

11. Method Performance

The method detection limit (MDL) is defined as the minimum concentration of a substance that can be measured and reported with 99% confidence that the value is above zero. The MDL concentrations were obtained using reagent water. The MDL actually achieved in a given analysis will vary depending on instrument sensitivity and matrix effects.

MDL’s must be established for all analytes, using reagent water (blank) fortified at a concentration of two to three times the estimated calculated detection limit.

Method performance data is on file in the laboratory QC department. Comparison of method performance data for the laboratory to the reference method criteria occurs when laboratory in-
house acceptance limits are generated. In-house generated data must be within the specifications of the reference method or the analysis is not continued until corrective action is completed.

12. Corrective Actions

If the Method Blank result exceeds the Reporting Limit (RL) for the analyte, the Blank is reanalyzed. If the second result remains > RL, notify the Laboratory Manager to ensure maintenance is performed on the water filtration system and seek an alternate reagent water source within the laboratory. If the alternate reagent water source is acceptable, this source must be utilized for all blanks, standards and sample dilutions for the sample batch. If the second source reagent water also fails, the Laboratory Manager is notified.

If the Continuing Calibration cannot be verified within the specified limits, reanalyze the CCV solution. Record the reason for re-injection. If the second analysis of the CCV solution confirms calibration to be outside the limits, sample analysis must be discontinued, the cause determined and/or in the case of drift, the instrument recalibrated. All samples following the last acceptable CCV solution must be reanalyzed. The analysis data of the calibration blank and CCV solution must be kept on file with the sample analyses data.

If the ICV/LCS acceptance criterion cannot be met, reanalyze the standard. If failure continues, the instrument is recalibrated.

If the Matrix Spike acceptance criteria is not met, the spiked sample is reanalyzed (if possible). If failure continues and if all other QC performance criteria are met, the data is reported and a narrative is included with the final report.

If the RPD for the Duplicate measurements falls outside the Laboratory defined control limits (Section 10.7), the sample is reanalyzed (if possible). If failure continues, and if all other QC performance criteria are met, the data is reported and a narrative is included with the final report.

Holding time exceedence and improper preservation are noted on the nonconformance report form. Perform routine preventative maintenance following manufacturer's specification. Record all maintenance in the instrument logbook.

Review of standards, blanks and standard response for acceptable performance occurs for each batch of samples. Record any trends or unusual performance on a nonconformance action form.

If the CCV or LCS recovery of any parameter falls outside the designated acceptance range, the laboratory performance for that parameter is judged to be out of control, and the problem must be immediately identified and corrected. The analytical result for that parameter in the unspiked samples is suspect and is only reported for regulatory compliance purposes with the appropriate nonconformance action form. Immediate corrective action includes reanalyzing all affected samples by using any retained sample before the expiration of the holding time.

13. Pollution Prevention

See Chemical Hygiene Plan for pollution prevention operations.

14. Waste Management

See Chemical Hygiene Plan for waste handling and disposal.

15. Attachments

Figure 1: Isocratic Anion Standard Separation
Figure 1
Isocratic Anion Standard Separation

1. Fluoride - 3.117
2. Chloride - 4.357
3. Nitrite - 5.227
4. Sulfite - 6.017
5. Bromide - 7.273
7. Phosphate - 11.507